1. Dostosowanie paska narzędzi.

1.1. Wyświetlanie paska narzędzi Rysuj.

W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok \Rightarrow Paski narzędzi \Rightarrow Dostosuj ...

lub w linii komend wprowadzić polecenie:

Command: _toolbar -

Na liście **Grupy menu** należy wybrać AMACAD, a następnie na liście Paski narzędzi należy odnaleźć i zaznaczyć pole **RYSUJ**. Okno należy zamknąć wybierając przycisk <Zamknij>.

aski narzędzi	Grupy <u>m</u> enu	
ACAD/M EX_Educia limi konstrui - JACAD/M EX_Linie konstrukcyjne JACAD/M EX_Linie osiowe JACAD/M EX_Linie osiowe JACAD/M EX_Prostokąt JACAD/M EX_Tabelka rysunkow. JACAD/M EX_Takst JACAD/M EX_Tekst JACAD/M EX_Zoom JACAD/M EX_ZOOM JACAD/	AMACAD AMFLY AMPP	<u>N</u> owy Z <u>m</u> jeń nazwę <u>U</u> suń n narzędzi we w

Rys. 2. Okno Adaptacja paski narzędzi (grupa: AMACAD).

1.2. <u>Wyświetlanie paska narzędzi ACAD/M_PP Obliczenia:</u>

W celu wyświetlenia paska narzędzi ACAD/M_PP Obliczenia należy wybrać w menu: Widok \Rightarrow paski narzędzi \Rightarrow Dostosuj ...

lub w linii komend wprowadzić polecenie

Command.	toolbar	_	- ENTER
Command:	_toolbar	-	•

Na liście **Grupy menu** należy wybrać AMPP, a następnie na liście Paski narzędzi odnaleźć i zaznaczyć pole **ACAD/M_PP Obliczenia**. Okno należy zamknąć wybierając przycisk <Zamknij>.

Rys. 3. Pasek narzędzi ACAD/M_PP Obliczenia

1.3. Wyświetlanie paska narzędzi ACAD/M PP Elementy

Pasek ACAD/M_PP Elementy wyświetlamy w sposób analogiczny jak pasek narzędzi ACAD/M_PP Obliczenia z tą różnicą, że na liście Paski narzędzi zaznaczamy okienko ACAD/M_PP Elementy.

Rys. 4. Pasek narzędzi ACAD/M_PP Elementy

2. Wywołanie okna Obliczenia wału.

W celu wywołania okna **Obliczenia wału** powinniśmy narysować nasz obliczany wałek przy pomocy podstawowych poleceń rysowania AUTOCAD'a, bądź przy pomocy narzędzia, **Generator wałków**

Jeżeli mamy narysowany wałek z paska narzędzi ACAD/M_PP Obliczenia wybieramy przycisk

Obliczenia wałków

1P3

W oknie dialogowym pojawiły się następujące instrukcje: Wskaż kontur lub [Twórz kontur/wytrzymałość]<Twórz>:

Dla wałka niestworzonego generatorem wałków - należy wybrać **<Twórz>**

W oknie dialogowym pojawiły się wezwanie:

Wybierz obiekty: - zaznaczamy elementy wałka, po zaznaczeniu ostatniego elementu wałka

W oknie dialogowym pojawiły się wezwanie:

Wybierz linię środkową wałka lub [Wskaż wewn. punkt wydrążonego wałka] <Wskaż>:

Należy wskazać linię definiującą oś wałka.

Dla wałka stworzonego generatorem wałków - należy wskazać kontur wałka

W oknie dialogowym pojawiły się wezwanie:

Określ położenie konturu: - Należy wskazać położenie konturu do obliczeń.

Na ekranie pojawi się okno Obliczenia wału.

Ibliczana część 🛛 🛛 🖓	protowy wałek					
Kierunek obrotów	Wybierz podr	porę	-Wybierz o	bciążenie	10	10
		<u>_</u>	Ô			÷
Materiał Educia I Do	«	\$235IB			-11	Kopiuj
Cuyolo Ob	e. Es estoristáu:	Challende	ulara DIN C	N 1000E	— i (Edycja
wytrzym, na rozciąganie	e: 360 N/mm^2	Gr. pla	wiana - Dini E istyczności:	235 N/mm^2		Wymaż
Moduł E:	210000 N/mm^	2 Stała	Poisson'a:	0.3		>>>
Obliczenia		11				
Konfig Momenty i	odkształcenia	Wartości z	wykresu 🛛 🛛	/ytrzymałość.	Aktuali	zuj wszystk

Rys. 5. Okno Obliczenia wału.

3. Definiowanie podpór.

3.1. Definiowanie podpory stałej.

W celu zdefiniowania podpory stałej z okna **Obliczenia wału** w części **Wybierz podporę** wybieramy przycisk z podporą stałą.

Określ punkt wstawienia – podajemy współrzędne punktu w którym ma być wstawiona podpora stała korzystając z klawiatury lub przy pomocy myszki wykorzystując funkcję śledzenia aby ustawić podporę na środku czopa (Shift + prawy przycisk myszy, z listy wybieramy CENTRUM)

3.2. Definiowanie podpory przesuwnej.

W celu zdefiniowania podpory stałej z okna **Obliczenia wału** w części wybierz podporę wybieramy przycisk z

podporą przesuwną i postępujemy analogicznie jak przy definiowaniu podpory stałej w punkcie 3.1.

4.Definiowanie kierunku obrotu wałka.

Aby zdefiniować kierunek obrotu wałka w oknie **Obliczenia wału** w części **Kierunek obrotów**. wybieramy odpowiedni przycisk:

, ,

- obrót w lewą stronę,

- obrót w prawą stronę.

5. Definiowanie obciążenia wałka.

5.1. Definiowanie siły skupionej.

W celu zdefiniowania siły skupionej z okna **Obliczenia wału** w części **Wybierz obciążenie** wybieramy przycisk z oznaczeniem siły skupionej.

Punkt wstawienia – podajemy punkt wstawienia siły skupionej za pomocą myszki lub podając współrzędne z klawiatury.

Określ kąt obrotu – podajemy kąt obrotu siły względem osi wałka.

Po wstawieniu kąta obrotu siły względem osi wałka otrzymaliśmy okno Siła skupiona.

🛃 Siła skupiona	<u>?</u> ×
🔲 🖸 bciążenie dynamiczne	
Wypadkowa Składniki	
Składowe siły skupionej $F_X = \boxed{1}$ $F_y = -100$ $F_z = \boxed{0}$ Składowe kąta gamma $h_z = \boxed{0}$ (mm)	
$h\underline{v} = \begin{bmatrix} 25 \\ \hline A \end{bmatrix} [mm]$	Pomo <u>c</u> C Bieżąca <u>s</u> ytuacja
	OK Anuluj <u>R</u> ezygnuj Pomo <u>c</u>

Rys. 6. Okno Siła skupiona.

5.2. Definiowanie momentu skręcającego.

W celu zdefiniowania momentu skręcającego z okna **Obliczenia wału** w części **Wybierz obciążenie** wybieramy przycisk z oznaczeniem momentu skręcającego.

Określ punkt wstawienia – podajemy punkt wstawienia momentu skręcającego za pomocą myszki lub podając współrzędne z klawiatury.

Po ustaleniu punktu wstawienia momentu skręcającego otrzymaliśmy okno Skręcanie.

Skręcanie			?>
Decisionia dupar	a wałkuj iczne		
Skręcanie	M <u>t</u> =	50	[Nm]
 Zgodnie z kjer. ob Przeciwnie do kier 	rotów . obrotów	r 🕎 z	
А	nuluj	<u>R</u> ezygnuj	Pomo <u>c</u>

Rys. 7. Okno Skręcanie.

W oknie Skręcanie oprócz wstawienia wartości momentu skręcającego w [Nm] możemy zdefiniować jego kierunek.

Jeżeli zaznaczymy:

Zgodnie z kier. obrotów– to moment skręcający będzie skierowany w kierunku ruchu obrotowego wałka
 Przeciwnie do kier. obrotów - to moment skręcający będzie skierowany przeciwnie do kierunku ruchu obrotowego.

Wybór potwierdzamy <OK>.

5.3. Definiowanie obciążenia bezpośrednio przez koło zębate.

5.3.1. Wywołanie komendy wstawienia koła zębatego.

W celu zdefiniowania koła zębatego z okna **Obliczenia wału** w części **Wybierz obciążenie** wybieramy przycisk z oznaczeniem.

Określ punkt wstawienia – podajemy punkt wstawienia koła zębatego za pomocą myszki lub podając współrzędne z klawiatury. Najlepiej przy użyciu punktów charakterystycznych w połowie czopa przeznaczonego pod koło zębate.

Po ustaleniu punktu wstawienia koła zębatego otrzymaliśmy okno Koło zębate.

Koło zębate				? >
Wprowadzenie Składniki				
Obciążenie koła zębateg Moment obrotowy na Stała moc napędowa Zmienna moc napędo	jo wałku wa		 <u>N</u>apędzane Napędzające 	
Momeny obrotowy	M <u>t</u> = 50	 [Nm]	Obli <u>c</u> zone z	
Gara zębatego Średnica <u>p</u> odziałow <u>K</u> ąt Gar Kąt <u>pr</u> zyporu	d1 = 50 <u>M</u> mma = 90 <u>M</u> Alfa = 20 <u>M</u>	3 [mm] 3 [deg] 3 [deg]		₽
Kąt poc <u>h</u> ylenia linii śr. I	3eta = ⁰ /	월 [deg]		
• Lewe pochylenie	C <u>P</u> rawe	pochylenie		
Koło zębate stożkow Kąt stożka tocznego	e Velta =	[deg]		
C L <u>e</u> wo	C Prawo		• Pomo <u>c</u> • Bieżąca	syt <u>u</u> acja
	ОК	Anuluj	<u>R</u> ezygnuj	Pomo <u>c</u>

Rys. 8. Okno koło zębate.

Okno Koło zębate mamy podzielone na dwie części:

- pierwsza część to **Obciążenie koła zębatego**,
- druga część to Geometria koła zębatego na wale.
- 5.3.2. Definiowanie momentu skręcającego na kole zębatym.

W części Obciążenie koła zębatego mamy do zdefiniowania następujące dane:

Moment obrotowy	Wpisujemy wartość momentu skręcającego w [Nm]
Napędzane/Napędzające	Podajemy czy definiowane koło zębate jest kołem
	napędzającym bądź napędzanym

5.3.3. Definiowanie geometrii obliczanego koła zębatego.

W części Geometria koła zębatego na wale będziemy ustalali geometrię koła zębatego:

Średnica toczna koła zębatego
Kąt pomiędzy osiami wałków kół sprzęgniętych ze
sobą
Kąt przyporu
Kąt pochylenia linii zęba
Pochylenie zęba w lewo / w prawo

W przypadku kół zębatych stożkowych zaznaczamy **Koło zębate stożkowe** podając kąt stożka podziałowego δ zaznaczając odpowiedni kierunek tworzących stożka.

6. Definiowanie materiału wałka.

Z okna Obliczenia wałów wybieramy klikając przycisk Edycja w polu Materiał.

Pojawia się okno Cechy materiałowe.

Opis:	150			Tabe	la
Grupa	Inna stal		•		
Wytrzym, na rozciąganie:		[N/mm^2]	Średnica odniesienia:	10 /1	[mm]
Gr. plastyczności:	75	[N/mm^2]	Średnica odniesienia:	10 🔥	[mm]
Odporność na wielokrotne rozciąg	anie:	[N/mm^2]			
Odporność na wielokrotne zginani	e:	[N/mm^2]	Тур:	Ciągliwy	
Odporność na wielokrotne skręcar	nie:	[N/mm^2]	Obróbka cieplna:	Inne	_
Moduł E:	80000	 [N/mm^2]	Stała Poisson'a:	0.25	16

Rys. 9. Okno Cechy materiałowe.

Następnie wciskamy przycisk Tabela.

Pojawia się okno Materiał.

Opis	Grupa materiałów	Granica plastyczności [N/mm^2]	Moduł - E [N/mm^2]	Poisson	1
100	8	50	70000	0.25	
150		75	80000	0.25	
200		100	105000	0.25	
250		125	130000	0.25	
300		150	130000	0.25	
350		175	130000	0.25	
900-2		600	130000	0.25	
800-2		480	130000	0.25	
700-2		420	130000	0.25	
600-3		370	130000	0.25	
500-7		320	130000	0.25	
450-10		310	130000	0.25	
400-15		250	130000	0.25	
400-18		250	130000	0.25	
350-22		220	130000	0.25	

Rys. 10. Okno Materiał.

Z listy dostępnych materiałów wybieramy ten z którego jest wykonany jest nasz element, poprzez zaznaczenie. Wybór potwierdzamy OK.

W liście materiałów podawane są następujące dane:

Opis (oznaczenie materiału)
Moduł Young'a
Naprężenie dopuszczalne
Liczba Poisson'a
Nie kruchy

Po ustaleniu materiału pozostajemy nadal w oknie Obliczenia wałów.

7. Edycja zdefiniowanych elementów.

7.1. Usunięcie obciążenia lub podpory.

W celu usunięcia podpory bądź obciążenia wybieramy przycisk Wymaż w oknie Obliczenia wałów.

Wybież element – za pomocą myszki wskazujemy podporę lub obciążenie które chcemy usunąć.

Aby po usunięciu podpory lub obciążenia powrócić do okna **Obliczenia wałów** należy wcisnąć klawisz <Enter> lub prawy przycisk myszki.

7.2. Zmiana wartości, geometrii itp.

Aby dokonać tych zmian wybieramy przycisk **Edycja** w oknie **Obliczenia wałów**. Uwaga dotyczy tylko zmian przy obciążeniach.

Wybierz element – za pomocą myszki wskazujemy obciążenie którego chcemy zmienić wartość.

Po wskazaniu siły skupionej, koła zębatego lub momentu skręcającego należy podać nowe parametry wstawienia lub zatwierdzić poprzednie klawiszem <Enter>.

Na ekranie pojawi się odpowiednie okno takie jak przy definiowaniu, wówczas dokonujemy odpowiednich zmian parametrów edytowanego obiektu.

8. Obliczenia.

W celu dokonania obliczeń w oknie **Obliczenia wałów** wybieramy przycisk **Momenty** i odkształcenia. Otrzymaliśmy okno **Wybierz wykres**.

	Wartość maks.	Wsp. skali	
🔻 Moment zginający w osi Y:	33.5828 [Nm]	21	
Moment zginający w osiZ:	41.9695 [Nm]	<u>~</u>	Pod wałkiem
Wypadkowy moment zginający:	46.3666 [Nm]	×	
✓ Ugięcie w osi Y:	45.4455 E-06 [mm	500000:1 -	
Ugięcie w osi Z:	372.9873 E-06 (mm	¥	Harrison
Wypadkowe ugięcie:	374.1194 E-06 [mm		Jeden punkt
ybierz wszystkie Odznacz wszystki	e	✓ Standard	X
			Okno

Rys. 11. Okno Wybierz wykres.

Wyboru dokonujemy przez zaznaczanie odpowiednich przełączników. Po dokonaniu wyboru wciskamy OK.

W wierszu poleceń pojawi się wezwanie: Określ punkt wstawienia – wskazujemy dowolny punkt myszką. Tabela wyników ma następującą postać:

Wytrzyma?o??	[N/mm^2]	75
Madu? Younga	[N/mm^2]	80000
Materia?		150
Maksymalne ugi?cie	[mm]	B74.1194 E-∎6
w odleg?o?ci	[mm]	329.7889
Maksymalny moment gn?cy	[Nm]	46.3666
w odleg?o?ci	[កាកា]	222.8971
Maksymalny moment skr?caj?cy	[Nm]	50.0
w odleg?o?ci	(mm)	91.3677
Maksymalny k?t skr?cenia	[deg]	2.1021 E-03
w odleg?o?ci	[៣៣]	0
Maksymalne napr??enie skr?caj?ce	[N/mm ²]	251.0387 E-03
w odleg?o?ci	[mm]	91.3677
Maksymalne napr??enia osiowe	[N/mm ²]	25.4462 E-13
w odleg?o?ci	[mm]	44,1778
Maksymalne napr??enia gn?ce	[N/mm^2]	465.5929 E-13
w odleg?o?ci	[កាកា]	222.8971
Maksymalne napr??enia [Von Mises]	[N/mm^2]	699.4586 E-13
w odleg?o?ci	[៣៣]	222.8971

Zadanie 1.

Wyznaczyć i obliczyć ugięcia oraz momenty gnące wału pośredniego przekładni zębatej pokazanego na rysunku.

 $\label{eq:P1} \begin{array}{l} P_1 = 10\ 000\ N\\ P_2 = 16\ 000\ N\\ \mbox{Material wałka stal $$S275N wg normy DIN. } \end{array}$

Rozwiązanie zadania 1.

- 1. Dostosowujemy pasek narzędzi zgodnie z punktem 1.
- 2. Tworzymy rysunek.
- 3. Wywołujemy okno **Obliczenia wału** zgodnie z punktem 2.
- 4. Definiujemy podpory wałka zgodnie z podpunktami 3.1. (dla podpory stałej) i 3.2. (dla podpory przesuwnej).
- 5. Definiujemy obciążenie w postaci siły skupionej zgodnie z podpunktem 5.1.
- 6. Definiujemy materiał wałka zgodnie z punktem 6.
- 7. Po zdefiniowaniu wszystkich elementów obliczenia przeprowadzamy zgodnie z punktem 8.

Zadanie 2.

Obliczyć ugięcia wałka pośredniego przekładni zębatej w miejscu osadzenia kół zębatych skośnych. Koło lewe jest napędzane, a prawe napędzające. Materiał wałka stal S355N wg normy DIN. $M_s = P_{o1} * \frac{d_1}{2} = P_{o2} * \frac{d_2}{2} = 107 Nm$.

Rozwiązanie zadania 2.

- 1. Dostosowujemy pasek narzędzi zgodnie z punktem 1.
- 2. Tworzymy rysunek wałka.
- 3. Wywołujemy okno **Obliczanie wału** zgodnie z punktem 2.
- 4. Definiujemy podpory wałka zgodnie z podpunktami 3.1. (dla podpory stałej) i 3.2. (dla podpory przesuwnej).
- 5. Definiujemy obciążenia bezpośrednio przez koła zębate. Punkt wstawienia definiujemy zgodnie z punktem 5.3.1.
- 5.1. Dla koła pierwszego w oknie Koło zębate w części Obciążenia koła zębatego podajemy wartość momentu skręcającego oraz zaznaczamy, iż koło jest kołem napędzanym. W części Geometria koła zębatego na wale okna Koło zębate ustalamy geometrię naszego koła zgodnie z punktem 5.3.3 instrukcji.
- 5.2. Dla koła drugiego w oknie Koło zębate w części Obciążenia koła zębatego podajemy wartość momentu skręcającego zaznaczamy iż koło jest kołem napędzającym. W części Geometria koła zębatego na wale okna Koło zębate ustalamy geometrię naszego koła.
- 6. Definiujemy materiał wałka zgodnie z punktem 6.
- 7. Po zdefiniowaniu wszystkich elementów obliczenia przeprowadzamy zgodnie z punktem 8.

Na wale dwupodporowym zamontowane są nieprzesuwne dwa koła zębate. Wał jest wykonany ze stali S355N wg normy DIN i przenosi moment skręcający 800 Nm. Wskazać maksymalne ugięcie wału.

Zadanie 4

Oblicz maksymalne ugięcie wału pośredniego skrzynki prędkości, wykreśl wykresy momentów gnących dla osi y i z, oraz wykres momentu skręcającego. Materiał Ck15 wg normy DIN.

