1.Wstęp.

AutoCAD Mechanical 2000 Power Pack oferuje szereg rozbudowanych narzędzi i kreatorów. Jednym z nich jest **ACAD/M AutoCAD generator wałów**. Pozwala on zarówno narysować na płaszczyźnie sam wał jak i typowe elementy na nim osadzane.

W celu uaktywnienia tego narzędzia należy wykonać następujące czynności:

- W górnym menu tekstowym otwieramy zakładkę Widok.
- Znajdujemy i otwieramy Paski narzędzi>Dostosuj paski narzędzi...
- W oknie ustawień pasków narzędzia (rys.1.1.) dokonujemy następujących zmian:

Paski narzędzi	Grupy menu	
ACAD/M EX_Edycja linii konstru	AMACAD AMFLY AMPP	Nowy
ACAD/M EX_Linie osiowe	000405334	Zmień nazwę Usuń
ACAD /M EX_Tabelka rysunkow ACAD /M EX_Tekst ACAD /M EX_Warstwy	🗖 Duże przyciski	
ACAD/M EX_Zoom2	Pokaż etykietki na	i paskach narzędzi klawiczowa w
_Bryły ⊉Cechy obiektu ⊐Cieniui	etykietkach	NIGYYIƏZÜYYG YY
Claing Edycja brył Edycja odnośnika		

- a. W menu rozwijanym Grupy menu: zaznaczamy grupę AMPP.
- b. W menu przewijanym **Paski narzędzi:** znajdujemy i zaznaczamy szukany pasek narzędzi **ACAD/M Generator wałków**, po czym na ekranie pojawia się pasek narzędzi, jak na rys.1.2.

- c. Zaznaczenie opcji Duże przyciski powoduje wyświetlanie "dużych" przycisków.
- d. Zaznaczenie opcji **Pokaż etykietki na paskach narzędzi** powoduje wyświetlanie wyjaśnień działania przycisków przy nieruchomym przytrzymaniu kursora nad danym przyciskiem.
- e. Zatwierdzamy dokonane zmiany przyciskiem <Zamknij>.

Wymieniony pasek narzędzi można także wywołać wykorzystując oryginalne ustawienia narzędzi programu, wykorzystując pasek grupy narzędzi **ACAD/M_PP Content** (rys.1.3.). Oryginalnie znajduje się on w "lewym" menu programu. **ACAD/M Generator wałów** wywołujemy klikając na dolny prawy róg (czarny trójkąt) ikony z symbolicznym wałem.

Jeśli nie ma paska grupy narzędzi ACAD/M_PP Content wywołujemy go w identyczny sposób jak to opisano wyżej dla paska narzędzi ACAD/M Generator wałów. Opis znaczenia ikon paska narzędzi ACAD/M Generator wałów:

_		1 t	
	₽	Shaft Generator	Wały
		Parallel / Woodruff Keys	Wpusty
	╉	Retaining Rings / Circlips	Pierścienie zabezpieczające – osadcze
	2	Seals	Uszczelnienia
	图	Adjusting Rings	Pierścienie osadcze sztywne
		Centerholes	Nakiełki
	┟╴	Undercuts	Podcięcia
	6	Shaft Breaks	Urwania wałów
		Roller Bearings	Łożyska toczne
	Reen. year	Plain Bearings	Łożyska ślizgowe
	¢,	Shaft Lock Nuts	Nakrętki łożyskowe
		Shim Rings	Podkładki regulacyjne
_			

2.Uwagi.

Uwagi ogólne dotyczące korzystania z generatora wałów:

- W bazie danych programu AutoCAD Mechanical 2000 Power Pack znajdują się wyłącznie znormalizowane elementy. Dane o nich są zaczerpnięte z różnych norm, takich jak: ISO, DIN, GOST, PN, i innych. W związku z tym w czasie rysowania należy podjąć decyzję o rodzaju stosowanej normy. Elementy wymiarowane w calach nie będą pasować do elementów "metrycznych".
- Stosowanie omawianego narzędzia wymaga wcześniejszego narysowania wału. Wskazane jest wykonanie tego zadania przy pomocy narzędzia: Generator wałów, choć narzędzia działają także na obiektach stworzonych dowolnymi technikami. (Opracowanie to nie obejmuje tego zagadnienia, ale wymaga jego elementarnej znajomości.) W przeciwnym wypadku mogą pojawić się trudności z zachowaniem porządku umieszczenia odpowiednich elementów wału w odpowiednich warstwach i zachowaniem grubości linii przy wydruku. W przypadku osadzania elementów w otworach (korpusie) mamy do czynienia zawsze z zarysami wykonanymi "innymi" technikami.
- Duże ułatwienie stanowią pomoce rysunkowe takie jak siatka, skok (standardowo 2,5 mm), śledzenie.
 Dzięki nim unika się błędów związanych z kształtowaniem wału. Należy pamiętać o zachowaniu

odpowiednich średnic wału w miejscach osadzania znormalizowanych elementów. (Niemożliwe jest przykładowo osadzenie łożyska tocznego na średnicy \$\oppsylon 41.)

- W czasie korzystania z wszystkich narzędzi należy śledzić komunikaty pojawiające się w dolnym pasku tekstowym. Znajdują się tam podpowiedzi co po kolei należy wykonać, aby poprawnie użyć narzędzia.
- W czasie korzystania z bazy danych elementów osadzanych na wale należy zapamiętać położenie "punktu charakterystycznego". Na schematycznych rysunkach części jest on zaznaczony zielonym symbolem "x". W przypadku wpustu czółenkowego będzie to punkt na osi symetrii wpustu leżący na powierzchni wału (rys.2.1.). Dla innych typów części położenie tego punktu jest odmienne.

W przypadku znalezienia kilku "pasujących" elementów, program wyświetla okno dialogowe w którym należy dokonać wyboru elementu do narysowania (rys.2.2.). Zawiera ono podstawowe informacje o wymiarach i oznaczeniach. W niektórych wypadkach (np. dobór łożysk tocznych, długości wpustu pryzmatycznego) o wyborze elementu decydujemy przeciągając myszą w kierunku równoległym i/lub prostopadłym do osi wału. Pojawiają się zarysy kolejnych elementów wraz z oznaczeniami wg odpowiednich norm. W lewym dolnym rogu okna znajduje się przycisk podglądu elementu. Podobny efekt daje użycie prawego przycisku myszy (wywołującego w ogólnym przypadku menu) i wybranie opcji podglądu.

	Opis Woustu	SzerokotŠ Wpustu		
1	Whushu		D\U+2502ugotS Nom	Nr normy
	protonol 1	8	27.35	x 28 - PN-88/M-85008
	Wpustu	10	31.43	1 x 32 - PN-88/M-85008
1.			H 05000	
			M-00000	nutiny, 11 x 20 • FIN-00/
				r
				1 2
		147 L		

W przypadku braku w bazie danych elementów spełniających zadane kryteria pojawia się okno informujące o tym fakcie i proszące o zmianę danych (rys.2.3.).

Błąd	×	
Nie odnaleziono odpow Proszę sprawdzić komb	iedniego rozmiaru! inacje	
ОК		Rys.2.3.

3. Opisy działania narzędzi.

W celu korzystania z narzędzi generatora wałów konieczne jest stworzenie obiektów, na których prowadzone będą te działania. W kilku wypadkach konieczne będzie użycie narzędzi rysunkowych AutoCAD'a. Przykładowy zestaw pasków narzędzi można wywołać w podobny sposób jak pasek **ACAD/M Generator wałów**. W tym celu w górnym menu tekstowym otwieramy: **Widok>Paski narzędzi>Dostosuj...** Pojawia się okno konfiguracyjne pasków narzędzi, w którym dokonujemy zmian:

- W menu rozwijanym Grupy menu zaznaczamy grupę AMPP, w menu przewijanym Paski narzędzi: znajdujemy i zaznaczamy pasek narzędzi ACAD/M Rysuj, oraz ACAD/M Modyfikacja. Na ekranie pojawiają się zaznaczone paski narzędzi (rys.3.1. i 3.2.).
- W menu rozwijanym Grupy menu zaznaczamy grupę AMACAD, w menu przewijanym Paski narzędzi: znajdujemy i zaznaczamy pasek narzędzi Wymiary. Na ekranie pojawia się zaznaczony pasek narzędzi (rys.3.3.).
- Po wprowadzeniu zmian w oknie konfiguracyjnym pasków narzędzi zmykamy je klawiszem <Zamknij>

3.1.Wpusty.

Generator połączeń wpustowych Wpust prostokątny / Czółenkowy pozwala rysować znormalizowane połączenia wpustowe. Proces ten podzielony jest na dwa etapy. Wpust rysuje się zawsze z rowkiem w wale (opcjonalnie można pominąć rysowanie wpustu tworząc w wale tylko rowek pod wpust). W drugim etapie można narysować rowek pod wpust w elemencie typu otwór. Narzędzie to posiada jednak ograniczenie. Możliwe jest rysowanie rowków wpustowych tylko w otworach cylindrycznych.

Możliwości generatora połączeń wpustowych obrazują graficzne przyciski okna bazy danych pojawiającego się po uruchomieniu narzędzia. Fragment tego okna przedstawia rysunek 3.1.1.

- a. wpusty pryzmatyczne we wnętrzu wału.
- b. wpusty pryzmatyczne na końcu wału.
- c. wpusty czółenkowe na wałach cylindrycznych.
- d. wpusty czółenkowe na wałach stożkowych.
- e. rowki wpustowe w otworach.

a. Rysowanie wpustów pryzmatycznych w widoku "z góry" i "z boku":

- Wybieramy w nim wpusty pryzmatyczne we wnętrzu wału lub na końcu wału.
- W następnej kolejności wybieramy rzut do narysowania widok z boku w przekroju cząstkowym lub widok z góry.
- W kolejnym oknie wybieramy normę, według której wpust ma zostać narysowany.
- Przechodzimy do wskazania punktów wstawienia. Na zewnętrznym zarysie wału zaznaczamy punkt bazowy 1 oraz punkt na osi wału2. Punkt na osi (rys.3.1.2.), wyznacza kierunek zwiększania długości wpustu.

 Pojawia się okno dialogowe (rys. 3.1.3.), w którym dokonujemy decyzji o rysowaniu wpustu w rowku. Zaznaczenie opcji **Rysuj część**, w ramce **Wybierz widoczność**, powoduje narysowanie wpustu. Pozostawienie pustego miejsca spowoduje pominięcie wpustu na rysunku. Przechodzimy dalej naciskając przycisk <Koniec>.

Położenie			 	
► Parametr	5	Rysuj część	nosc	
	< Wstecz Dalei	Koniec	Anului 1	Rvs 3

 Pojawia się zarys wpustu na tle wału. Wskazujemy długość wpustu przeciągając kursor myszy w kierunku osi wału (rys.3.1.4.). program wyświetla informację o aktualnej znormalizowanej długości wpustu. Wybór zatwierdzamy klawiszem <Enter> lub lewym przyciskiem myszy.

• W przypadku istnienia innych rzutów wału, stworzonych przy pomocy generatora wałów, program proponuje narysowanie wpustu na pozostałych rzutach (rys.3.1.5.). Zazwyczaj odpowiadamy twierdząco

b. Rysowanie wpustów w widoku "od czoła" wału:

- Uruchamiamy generatora wpustów przyciskając przycisk . Pojawia się okno **Wybierz wpust lub piastę**, którego fragment przedstawia rys.3.1.1.
- Wybieramy w nim dowolny rodzaj wpustu do narysowania.
- W następnej kolejności wybieramy rzut do narysowania Widok od czoła.
- W kolejnym oknie wybieramy normę, według której wpust ma zostać narysowany.
- Przechodzimy do określenia punktów wstawienia (rys.3.1.9.). dla wszystkich odmian wpustu wskazujemy punkt jeżący na okręgu zarysu wału:

- Pojawia się okno dialogowe zbliżone do przedstawionego na rys.3.1.3. i 3.1.8. w którym dokonujemy decyzję o rysowaniu wpustu w rowku. Zaznaczenie opcji Rysuj część, w ramce Wybierz widoczność, powoduje narysowanie wpustu. Pozostawienie pustego miejsca spowoduje pominięcie wpustu na rysunku. Przechodzimy dalej naciskając przycisk <Koniec>.
- Pojawia się okno informacyjne z wymiarami znormalizowanych wpustów (rys.3.1.10.a. lub rys.3.1.10.b.). jego forma zależy od rodzaju normy. Zaznaczenie danej opcji nie ma wpływu na wynik tworzenia rysunku.

STDRT	PB [mm]	NLG [mm]	PNT [mm]
Nr normy	SzerokotŠ Wpustu	D\U+2502ugot\$ Nomi	G\U+2502fbokot
12 x 11 x 28 - PN-91/M-	12	28	
12 x 11 x 32 · PN-91/M-	12	32	8
12 x 11 x 36 - PN-91/M-	12	36	
12 x 11 x 40 - PN-91/M-	12	40	
12 x 11 x 45 - PN-91/M-	12	45	
12 x 11 x 50 · PN-91/M-	12	50	
12 x 11 x 56 - PN-91/M-	12	56	
			•
normy: C 12 x 11 x 28 - F	PN-91/M-85001		
1			

Rys.3.1.10.b.

• Automatyczne uzupełnienie pozostałych rzutów przy pomocy tej metody jest niemożliwe.

c. Rysowanie rowka wpustowego w otworze cylindrycznym:

- Uruchamiamy generatora wpustów przyciskając przycisk 🚟. Pojawia się okno **Wybierz wpust lub piastę**, którego fragment przedstawia rys.3.1.1
- Wybieramy w nim przycisk Piasta.
- W kolejnym oknie wybieramy normę według której rowek ma zostać narysowany.
- Określamy rodzaj rzutu do narysowania: z boku lub od czoła.
- Przechodzimy do określenia punktów wstawienia. Dla widoku od czoła jest to punkt leżący na okręgu. Dla rysunku rowka w widoku z boku postępujemy według rys.3.1.11.
 - 1.Wskazujemy punkt na średnicy otworu
 - 2.Wskazujemy punkt na osi otworu
 - 3.Wskazujemy punkt początkowy rowka

4.Wskazujemy punkt końcowy rowka

• W przypadku istnienia innych rzutów otworu, stworzonych przy pomocy generatora wałów, program proponuje narysowanie wpustu na pozostałych rzutach (rys.3.1.12.). Zazwyczaj odpowiadamy twierdząco.

Zadania:

Zadanie 1.

Przy pomocy generatora wałów narysować wałek o wymiarach jak na rysunku poniżej.

a.korzystając ze wskazówek zawartych w punkcie 3.1.a. należy osadzić na nim wpusty pryzmatyczne. Należy korzystać z normy PN – 91 / M – 85002 dla wpustów osadzanych we wnętrzu wału i z normy PN – 91 / M – 85001 dla wpustów osadzanych na końcu wału. Oba rodzaje wpustów wykonać jako wpusty odmiany A.

Poprawnie wykonane zadania przedstawia poniższy rysunek.

Zadanie 2.

Należy narysować przy pomocy generatora wałów dowolne koło zębate rys. a). Należy wykonać rowek pod wpust i przedstawić koło z rowkiem w dwóch rzutach rys. b).

3.2.Łożyska toczne.

•

Uruchamiamy generatora łożysk tocznych przyciskając przycisk 22. Pojawia się okno Wybierz łożysko toczne.

- Wybieramy w nim dowolny rodzaj łożyska do narysowania pomiędzy poprzecznymi i osiowymi.
- W kolejnym oknie wybieramy normę według której łożyska mają zostać narysowane. O rodzaju łożyska informują schematyczne rysunki zamieszczone na przyciskach.
- W następnej kolejności wybieramy rzut do narysowania widok z boku w przekroju lub od przodu.
- Przechodzimy do wskazania punktów wstawienia. Dla widoku z boku (rys.3.2.1.) będzie to punkt leżący na zarysie wału 1 i w następnej kolejności punkt leżący na osi wału 2. Punkt na osi wyznacza kierunek możliwego przyrostu szerokości łożyska.

W przypadku wyboru widoku od czoła punktem wstawienia (rys.3.2.2.) będzie punkt leżący na okręgu.

Rys.3.2.2.

• Pojawia się okno definiowania geometrycznych kryteriów doboru łożyska (rys.3.2.3.).

Położenie	Wstępny wybór geometryczny	
Obliczenia Wynik	Średnica wewnętrzna:	
	Szerokość:	
	Dynamiczne ciągnięcie średnicy zewnetrznej średnicy wewnętrznej	
	<wstecz dalej=""> Koniec Anuluj</wstecz>	Rys.3.2

W ramce **Wstępny wybór geometryczny** ustalamy zakresy wymiarów łożyska: średnicy wewnętrznej, średnicy zewnętrznej, szerokości. Rodzaj wyszukiwania (=; <; >; <=; >=; nieograniczony) ustalamy korzystając z przycisków po lewej stronie ramek tekstowych z wymiarem. Pozostawienie pustych pól powoduje znalezienie wszystkich łożysk spełniających dane kryterium.

W ramce **Dynamiczne ciągnięcie** ustalamy która średnica łożyska może się zmieniać: zewnętrzna lub wewnętrzna.

Przechodzimy dalej naciskając przycisk **Dalej** > lub pomijamy dalsze kreatory naciskając przycisk **Koniec**.

• W oknie modułu obliczeniowego (rys.3.2.4.) definiujemy obciążenie łożyska.

Położenie Geometria Obliczenia Wynik	Zast. obciążenie Obciążenie promieniowe: N Obciążenie 500 N	- Kombinacja
	Nastawy Ograniczenia Trwałość min. : Trwałość max.: Liczba obrotów [obr./min]; 1000	Pojedyncze 💌 📔

- W ramce Zast. obciążenie definiujemy siły obciążające łożysko poprzeczną Obciążenie promieniowe: i wzdłużną Obciążenie osiowe:.
- W ramce Kombinacja definiujemy ilość łożysk w podporze 1 Pojedyncze, 2 Podwujne lub wiele Zespół.
- W ramce Ograniczenia określamy sposób określania trwałości łożyska. Zaznaczenie opcji Dynamiczny oznacza, że łożysko obraca się, pozostawienie niezaznaczonej powoduje obliczenia nośności statycznej. Obliczenia można prowadzić w kierunku wyznaczenia liczby obrotów żywotności łożyska (zaznaczona opcja Obroty [-]) lub trwałości w godzinach pracy (zaznaczona opcja Liczba godzin [h]). Konieczne jest wówczas podanie prędkości obrotowej w polu tekstowym Obroty [rpm]. Dodatkowo można określić minimalną i maksymalną trwałość łożyska w polach tekstowych Trwałość min i Trwałość max.

Przyciskając przycisk Nastawy... w ramce Zast. obciążenie ustalamy szczegóły obliczeń (rys3.2.5.).

ryb obliczania	<u>? ×</u>	
Tryb obliczania		
DIN ISO 76 / 281	•	
Jednostka siły:	Jednostka długości: mm milimetr	
IN NEWION		
Współczynniki regul	acji trwałości	

- W menu Tryb obliczenia określamy metodę obliczeń. Dla łożysk według PN zaleca się normę DIN / ISO.
- Poniżej definiujemy jednostki siły i długości.
- W ramce Współczynnik regulacji trwałości określamy "pewność" obliczeń. W menu Niezawodność ustalamy zakresy nośności ruchowej łożysk: L10 oznacza że 90% łożysk będzie

Rys.3.2.4.

pracować poprawnie w zadanym czasie; L5 – 95%; L1 – 99%; itd. W polach tekstowych określamy współczynniki bezpieczeństwa: "jakości materiałów" **Współczynnik materiałowy** a2: i "skutków awarii" **Współczynnik użytkownika a3:**.

• Pojawia się okno wyników obliczeń (rys.3.2.6.a i rys.3.2.6.b.). W jego górnej części znajduje się menu przewijane z symbolami łożysk spełniającymi zadane kryteria. Zakładka **Dane wejściowe** podaje dane wejściowe, natomiast zakładka **Wynik** wyniki obliczeń.

N OOVI TOOL	00	?	×
Położenie Geometria Obliczenia	61838 61840 61844 61848	×	
vv yr nix	Dane wejściowe Wynik Łożysko kulkowe PN-85/M-86100, jedr Brak kombinacji, obciążenie dynamiczne Obliczenia DIN ISO 76 / 281 Obciążenie promieniowe Fr:	1 / 61 orzędowe s - L10 1000 N	
	Obciążenie osiowe Fa: Kąt styku a: Współ, regulacji trwałości a23:	500 N 0 * 1.00 -	Rys.3.2.6.a.
	< Wstecz Dalej > Kon	iec Anuluj	1
PN-85/M-861	< Wstecz Dalej> Kon	iec Anuluj	×
PN-85/M-861 Położenie Geometria Obliczenia • Wynik	< Wstecz Dalej> Kon 00 61838 61840 61844 61848	iec Anuluj ?	
PN-85/M-861 Położenie Geometria Obliczenia Mynik	 < Wstecz Dalej > Kon 61838 61840 61844 61848 Dane wejściowe Wynik Współczynnik fo: 	iec Anului ? ? 1 / 61 15.86 -	
PN-85/M-861 Położenie Geometria Obliczenia Wynik	 < Wstecz Dalej> Kon 00 61838 61840 61844 61848 Dane wejściowe Wynik Współczynnik fo: Dynam. współ. promieniowy X: Dynamiczny współ. osiowy Y: 	iec Anului ? ? 1 / 61 15.86 - 1.00 - 0.00 -	

 Wybieramy łożysko "najlepsze" łożysko podwójnie klikając na jego symbolu lub przechodzimy do dynamicznego doboru łożyska klikając przycisk <**Koniec>**. Pojawia się zarys łożyska na tle wału (rys.3.2.7.). Przeciągając kursor w kierunku prostopadłym i równoległym do osi wału ustalamy odpowiadający rozmiar łożyska. Wybór zatwierdzamy naciskając <**Enter>** lub lewy przycisk myszy.

• O ile istnieją inne rzuty wału, stworzone przy pomocy generatora wałów, program proponuje narysowanie łożyska na pozostałych rzutach (rys.3.2.8.). Zazwyczaj odpowiadamy twierdząco. W przypadku rysowania widoku od czoła opcja ta jest niedostępna.

Zadanie:

Korzystając z przedstawionych wskazówek w punkcie 3.2 należy dobrać dla osi przedstawionej na rysunku łożyska toczne dla wymaganej trwałości $L_{h min} = 1000$ [h]. Należy dążyć do minimalizacji wymiarów łożyskowania. Średnice czopów i reakcje w podporach przedstawione są na rysunku. Oś obraca się z prędkością n = 800 [obr/min]. Należy korzystać z łożysk kulkowych poprzecznych według **PN – 85 / M – 86100**. Dobrane łożyska narysować na zarysie osi.

3.3.Pierścienie osadcze zabezpieczające.

- Uruchamiamy generatora pierścieni osadczych sprężynujących przyciskając przycisk . Pojawia się okno
 Wybierz pierścień ustalający / sprężynujący zabezpieczający.
- Wybieramy w nim pomiędzy pierścieniami zewnętrznymi i wewnętrznymi.
- W następnej kolejności wybieramy rzut do narysowania. Mamy możliwość stworzenia rzutu z boku w przekroju lub widoków od czoła i widoku od czoła w przekroju.
- W kolejnym oknie wybieramy normę według której pierścień ma zostać narysowany.
- Przechodzimy do wskazania punktów wstawienia. Dla widoku z boku (rys.3.3.1.) będzie to punkt leżący na zarysie wału lub otworu (1) i w następnej kolejności punkt leżący na osi wału (2). Punkt 2 na osi wału musi leżeć po stronie powierzchni oporowej, którą stanowi powierzchnia osadzanego elementu, gdyż wyznacza on kierunek możliwego przyrostu szerokości pierścienia.

W przypadku wyboru widoku od czoła lub widoku od czoła w przekroju punktem wstawienia (rys.3.3.2.) będzie punkt leżący na okręgu

 Pojawia się okno dialogowe (rys.3.3.3.), w którym dokonujemy decyzję o rysowaniu pierścienia w rowku. Zaznaczenie opcji **Rysuj część** w ramce **Wybierz widoczność** powoduje narysowanie pierścienia. Pozostawienie pustego miejsca spowoduje pominięcie pierścienia na rysunku. Przechodzimy dalej naciskając przycisk <Koniec>.

Położenie			/ybierz widoczno	ść	
Parametr	5		7 Rysuj część		
				<u>121</u>	
		1			
	2 1.				

• Często możliwe jest zastosowanie kilku odmian pierścieni. Program wyświetla wówczas okno **Wybierz** rozmiar części (rys.3.3.4.) w którym podejmujemy ostateczną decyzję o wymiarach pierścienia.

Nr normy Grubość Średnica rowka Dozwolona prędkość Opis N-81/M-85111 - Z 40 1.75 37.5 14300 Pierścień osadcz N-81/M-85111 - Z 40 x 2 2.5 37.5 14300 Pierścień osadcz	Nr normy Grubość Średnica rowka Dozwolona prędkość Opis N-81/M-85111 - Z 40 1.75 37.5 14300 Pierścień osadcz N-81/M-85111 - Z 40 x 2 2.5 37.5 14300 Pierścień osadcz N-81/M-85111 - Z 40 x 2 2.5 37.5 14300 Pierścień osadcz normy: PN-81/M-85111 - Z 40	STDRT	SD [mm]	ND [mm]	NABL [1/min]	DESCR
N-81/M-85111 - Z 40 1.75 37.5 14300 Pierścień osadcz N-81/M-85111 - Z 40 x 2 2.5 37.5 14300 Pierścień osadcz	N-81/M-85111 - Z 40 1.75 37.5 14300 Pierścień osadcz N-81/M-85111 - Z 40 x 2 2.5 37.5 14300 Pierścień osadcz 14300 Pierścień osadcz normy: PN-81/M-85111 - Z 40	Nr normy	Grubość	Średnica rowka	Dozwolona prędkość	Opis
<u>V-81/M-85111 - Z 40 x 2</u> 2.5 37.5 14300 Pierścień osadcz	<u>v.81/M-85111 - Z 40 x 2</u> 2.5 37.5 14300 Pierścień osadcz 	N-81/M-85111 - Z 40	1.75	37.5	14300	Pierścień osadcz
	normy: PN-81/M-85111 - Z 40	N-81/M-85111 - Z 40 x	2 2.5	37.5	14300	Pierścień osadcz
normy; PN-81/M-85111 + Z 40						
		1 normy: PN-81/M-8511*	•Z 40			<u>)</u>

• W przypadku istnienia innych rzutów wału lub otworu, stworzonych przy pomocy generatora wałów, program proponuje narysowanie pierścienia i rowka na pozostałych rzutach (rys.3.7.5.). Zazwyczaj odpowiadamy twierdząco. W przypadku rysowania widoków od czoła opcja ta jest niedostępna.

Zadanie:

Na wałku o średnicy \emptyset 60 w poprawny sposób osadzić łożysko toczne serii 6412. Połączenie to narysować w dwóch rzutach.

Rozwiązanie:

- Rysujemy wałek jak na rysunku.
- Osadzamy łożysko według wskazówek w punkcie 3.2.
- Zabezpieczamy łożysko pierścieniem według wskazówek w punkcie 3.3. Można zastosować pierścień osadczy według PN 81/ M 85111 Z 60 lub Z 60 x 3 (wzmocniony).

3.4.Uszczelnienia.

a.Uszczelnienia typu "S':

- Uruchamiamy generatora uszczelnień przyciskając przycisk . Pojawia się okno **Wybierz uszczelnienie** wałka.
- Wybieramy w nim rodzaj uszczelnienia do narysowania. Przyciskamy przycisk Uszczelnienia.
- W kolejnym oknie wybieramy rodzaj normy, według której uszczelnienie ma być rysowane.
- W następnej kolejności podajemy rodzaj rzutu do narysowania: rzut z boku w przekroju lub widok od czoła.
- Przechodzimy do wskazania punktów wstawienia. Dla widoku z boku (rys.3.4.1.) będzie to punkt leżący na zarysie wału 1 i w następnej kolejności punkt leżący na osi wału 2. Punkt na osi wału należy wskazać od strony wyznaczającej skrajne położenie pierścienia uszczelniającego.

W przypadku wyboru widoku od czoła punktem wstawienia (rys.3.4.2.) będzie punkt leżący na okręgu.

• Przechodzimy do wskazania rozmiaru pierścienia uszczelniającego (rys.3.4.3.) przeciągając kursor poprzecznie do osi wału. Wybór zatwierdzamy wciskając <Enter> lub lewy klawisz myszy.

• O ile istnieją inne rzuty wału, stworzone przy pomocy generatora wałów, program proponuje automatyczne ich uzupełnienie (rys.3.4.4.). Zazwyczaj odpowiadamy twierdząco. W przypadku rysowania widoku od czoła opcja ta jest niedostępna.

Pytanie (AutoCAD-a		×
\triangle	Uaktualnić w	atoje?	
[Tak	Nie	Rys.3.4.4.

b.Uszczelnienia typu "O':

- Uruchamiamy generatora uszczelnień przyciskając przycisk . Pojawia się okno **Wybierz uszczelnienie** wałka.
- Wybieramy w nim rodzaj uszczelnienia do narysowania. Przyciskamy jeden z przycisków **O-Ring...** Mamy do wyboru uszczelnienie osadzone w wale w otworze oraz na powierzchni czołowej.
- W następnej kolejności podajemy rodzaj rzutu do narysowania: rzut z boku w przekroju, widok od czoła lub widok od czoła w przekroju.
- W kolejnym oknie podajemy numer normy według której pierścień i rowek ma zostać narysowany. Należy zwrócić uwagę na opisy przeznaczenia. Mimo stosowania tych samych pierścieni konstrukcje rowków są inne.
- Przechodzimy do wskazania punktów wstawienia. Dla widoku z boku (rys.3.4.1.) będzie to punkt leżący na zarysie wału i w następnej kolejności punkt leżący na osi wału W zależności od rodzaju rzutu punkty te muszą leżeć na prostej prostopadłej do osi (np. uszczelnienie w wale) lub punkt na osi musi wyznaczać kierunek "wgłąb" materiału (np. uszczelnienie na czole w widoku z boku).

W przypadku wyboru widoku od czoła punktem wstawienia (rys.3.4.2.) będzie punkt leżący na okręgu .

Pojawia się okno dialogowe (rys.3.4.5.) w którym dokonujemy decyzję o rysowaniu elementów. Zaznaczenie opcji Rysuj część w ramce Wybierz widoczność powoduje narysowanie pierścienia uszczelniającego w rowku. Pozostawienie pustego miejsca spowoduje pominięcie części na rysunku. Przechodzimy dalej naciskając przycisk Koniec.

🛃 ISO 3601-1 h	ydrauliczne (Zewnętrzne)	<u>? ×</u>
Położenie ▶ Parametr	Wybierz w Rysuj	idoczność
	< Wstecz Dalej > Koniec	Anuluj Rys.3.4.

• Często możliwe jest zastosowanie kilku odmian wielkości przekroju poprzecznego pierścienia uszczelniającego. Program wyświetla więc okno **Wybierz rozmiar części** (rys.3.4.6.) w którym podejmujemy ostateczną decyzję o wymiarach przekroju.

Wybierz rozmiar części						
STDRT	NND [mm]	DESCR	BD [mm]	1		
Nr normy	Średnica Wałka	Opis	Średnica Otworu	u		
ISO 3601-1 - B 0345 G	40	Pierścień O	40			
ISO 3601-1 - C 0335 G	40	Pierścień O	40)		
Nr normy: ISO 3601-1 - I	3 0345 G					
						Rys.3.4.6
						•
PO2020000				edui 🗍	Pomoc	
					1 01100	

• W przypadku istnienia innych rzutów wału, stworzonych przy pomocy generatora wałów, program proponuje automatyczne uzupełnienie pozostałych rzutów (rys.3.4.7.). Zazwyczaj odpowiadamy twierdząco. W przypadku rysowania widoku od czoła opcja ta jest niedostępna.

Zadanie 1:

Narysować łożyskowanie wału w korpusie z uszczelnieniem przy pomocy pierścienia typu "S" jak na przedstawionym rysunku.

Rozwiązanie:

- Rysujemy wałek ze stopniem o średnicy \emptyset 60.
- Osadzamy na nim łożysko kulkowe według wskazówek w punkcie 3.2.
- Zabezpieczamy łożysko pierścieniem osadczym wskazówek zawartych w punkcie 3.3.
- Rysujemy uszczelnienie według wskazówek zawartych w punkcie 3.4.a.
- Rysujemy i kreskujemy korpus.

Zadanie 2:

Narysować uszczelnienie ruchowe tłoka w cylindrze przy pomocy pierścieni typu "O" jak na rysunku.

- Rysujemy wałek o średnicy zewnętrznej \emptyset 60.
- Rysujemy tuleję z przelotowym otworem o średnicy wewnętrznej \emptyset 60.
- Zestawiamy obie części.

• Rysujemy uszczelnienia według wskazówek zawartych w punkcie 3.4.b. Stosujemy pierścienie według norm ISO, zwracając uwagę na przeznaczenie do urządzeń hydraulicznych. Staramy się dobrać możliwie największy przekrój pierścienia.